Sprint Chase Technologies
  • Home
  • About
    • Why Choose Us
    • Team Members
    • Testimonials
  • Services
    • Web Development
    • Web Application Development
    • Mobile Application Development
    • Web Design
    • UI/UX Design
    • Social Media Marketing
  • Projects
  • IT Institute
  • Contact Us
menu
close

Need Help? Talk to an Expert

+91 8000107255
Sprint Chase Technologies
  • Home
  • About
    • Why Choose Us
    • Team Members
    • Testimonials
  • Services
    • Web Development
    • Web Application Development
    • Mobile Application Development
    • Web Design
    • UI/UX Design
    • Social Media Marketing
  • Projects
  • IT Institute
  • Contact Us

Need Help? Talk to an Expert

+91 8000107255

torch.exp(): Exponential of Elements in a Tensor

Home torch.exp(): Exponential of Elements in a Tensor
PyTorch torch.exp() Method
  • Written by krunallathiya21
  • May 27, 2025
  • 0 Com
PyTorch

The torch.exp() method calculates the element-wise exponential of the input tensor.  For each element x, it returns e^x, where e is Euler’s number (base of natural logarithms). The Euler’s number is 2.7182818. So, basically it is 2.7182818^input.

The standard exponential formula is this: exponential formula

It is commonly used in activation functions, probability calculations, and mathematical modeling.

torch.exp() on 1D tensor

Syntax

torch.exp(input, out=None)

Parameters

Argument Description
input (Tensor) It is an input tensor whose exponential values we need to calculate.
out (Tensor, optional) It is an output tensor to store the result. It must match the shape and data type of the expected output. 

Basic element-wise exponential

import torch

# Input tensor
tensor = torch.tensor([1.0, 2.0, 3.0])

exp_tensor = torch.exp(tensor)

print(exp_tensor)
# Output: tensor([ 2.7183,  7.3891, 20.0855])

In the above code, each tensor element is transformed as ( e^x ). 

For ( x = [1.0, 2.0, 3.0] ), the result is ( [e^1.0, e^2.0, e^3.0] = [2.7183, 7.3891, 20.0855] ).

Matrix (2D Tensor)

torch.exp() on 2D tensor
import torch

tensor_2d = torch.tensor([[1.0, 2.0], [3.0, 4.0]])

exp_2d = torch.exp(tensor_2d)

print(tensor_2d)
print(exp_2d)

# Output:

# tensor([[1., 2.],
#         [3., 4.]])

# tensor([[ 2.7183,  7.3891],
#         [20.0855, 54.5982]])

Using the “out” argument

If you have a pre-allocated tensor, you can use the “out” argument to store the result in this tensor and avoid creating a new tensor.

import torch

# Input tensor
tensor = torch.tensor([5.0, 6.0, 7.0])

# Pre-allocated output tensor
out_tensor = torch.empty(3)

torch.exp(tensor, out=out_tensor)

print(out_tensor)
# Output: tensor([ 148.4132,  403.4288, 1096.6332])

Complex input

The .exp() method handles the complex tensors very well.

import torch
import math

complex_tensor = torch.tensor([1j * math.pi], dtype=torch.complex64)

complex_exp = torch.exp(complex_tensor)

# Print the result
print("Input:", complex_tensor)
print("Exponential (e^{iπ}):", complex_exp)

# Output:
# Input: tensor([0.+3.1416j])
# Exponential (e^{iπ}): tensor([-1.-8.7423e-08j])

With Autograd (Backpropagation)

You can enable gradient computation while creating a tensor using the requires_grad=True argument and then calculate each element’s exponential.

import torch

grad_tensor = torch.tensor([1.0, 2.0], requires_grad=True)

grad_exp = torch.exp(grad_tensor)

grad_exp.backward(torch.tensor([1.0, 1.0]))

print(grad_tensor.grad)
# Output: tensor([2.7183, 7.3891])

The above output illustrates the change in output when you adjust the inputs 1.0 and 2.0.

That’s all!
Post Views: 3
LEAVE A COMMENT Cancel reply
Please Enter Your Comments *

krunallathiya21

All Categories
  • Golang
  • JavaScript
  • Python
  • PyTorch
site logo

Address:  TwinStar, South Block – 1202, 150 Ft Ring Road, Nr. Nana Mauva Circle, Rajkot(360005), Gujarat, India

sprintchasetechnologies@gmail.com

(+91) 8000107255.

ABOUT US
  • About Us
  • Team Members
  • Testimonials
  • Contact

Copyright by @SprintChase  All Rights Reserved

  • PRIVACY
  • TERMS & CONDITIONS
  • BLOG