Sprint Chase Technologies
  • Home
  • About
    • Why Choose Us
    • Contact Us
    • Team Members
    • Testimonials
  • Services
    • Web Development
    • Web Application Development
    • Mobile Application Development
    • Web Design
    • UI/UX Design
    • Social Media Marketing
    • Projects
  • Blog
    • PyTorch
    • Python
    • JavaScript
  • IT Institute
menu
close

Need Help? Talk to an Expert

+91 8000107255
Sprint Chase Technologies
  • Home
  • About
    • Why Choose Us
    • Contact Us
    • Team Members
    • Testimonials
  • Services
    • Web Development
    • Web Application Development
    • Mobile Application Development
    • Web Design
    • UI/UX Design
    • Social Media Marketing
    • Projects
  • Blog
    • PyTorch
    • Python
    • JavaScript
  • IT Institute

Need Help? Talk to an Expert

+91 8000107255

torch.linalg.det() Method in PyTorch

Home torch.linalg.det() Method in PyTorch
torch.linalg.det() Method in PyTorch
  • Written by krunallathiya21
  • July 21, 2025
  • 0 Com
PyTorch

The torch.linalg.det() method calculates the determinant of a square matrix. The determinant is a scalar value that provides important properties of a matrix, such as whether it is invertible (non-zero determinant) or singular (zero determinant).

torch.linalg.det() Method

This method is mainly used for checking matrix invertibility. It helps us analyze eigenvalues and matrix properties in machine learning and scientific computing.

For a 2×2 matrix [[a, b], [c, d]], the determinant is calculated as: ad – bc.

Syntax

torch.linalg.det(A, out=None)

Parameters

Argument Description
A (Tensor) It is a tensor of shape (*, n, n), where * is zero or more batch dimensions, and n is the size of the square matrix.
out (Tensor, optional)

It is the output tensor to store the result.

Determinant of a Single 2×2 Matrix

Let’s define a 2×2 tensor and find its determinant.
import torch

A = torch.tensor([[4.0, 3.0],
                  [2.0, 1.0]])

det = torch.linalg.det(A)

print(det)

# Output: tensor(-2.0)

You must be wondering why the output is tensor(-2.0). Let’s find out: Here, 4 × 1 – 3 × 2 = 4 – 6 = -2. A non-zero determinant indicates the matrix is invertible.

Identity Matrix

Identity Matrix of determinant What if the input is an identity matrix? Well, determinant of the Identity matrix is always 1. To create an identity matrix, use the torch.eye() method.
import torch

I = torch.eye(3)

det_I = torch.linalg.det(I)

print(det_I)

# Output: tensor(1.)

Singular Matrix (det=0)

If the input tensor is a singular matrix, the determinant is 0.

import torch

singular = torch.tensor([[1., 2.], [2., 4.]])

det = torch.linalg.det(singular)  # 1*4 - 2*2 = 0

print(det)

# Output: tensor(0.)

Complex Matrix

If the input is a complex matrix, the output is also a complex tensor.
import torch

complex_mat = torch.tensor([[1+2j, 3j], [4., 5-1j]])

det = torch.linalg.det(complex_mat)  # (1+2j)(5-1j) - (3j)(4)

print(det)

# Output: tensor(7.-3.j)

Empty matrix

If the input is an empty matrix, its determinant is 1.
import torch

empty_matrix = torch.empty(0, 0)

det = torch.linalg.det(empty_matrix)

print(det)

# Output: tensor(1.)
That’s all!
Post Views: 6
LEAVE A COMMENT Cancel reply
Please Enter Your Comments *

krunallathiya21

All Categories
  • JavaScript
  • Python
  • PyTorch
image
image
image
image
image
logo

Address: 121 King Street, Melbourne Victoria 3000 Australia.

hamela@example.com

+36 (0) 1779 228 338..

ABOUT US
  • About
  • Team Members
  • Testimonials
  • Contact
SUPPORT
  • Content Strategy
  • Copywriting
  • Content Marketing
  • Web Design
QUICK LINKS
  • Marketplace
  • Documentation
  • Customers
  • Carrers
INSTAGRAM

Copyright by @Themesflat  All Rights Reserved

  • PRIVACY
  • TERMS & CONDITIONS